Rutgers University: Algebra Written Qualifying Exam January 2015: Problem 1 Solution

Exercise. Prove that the group \mathbb{Q} of rationals under addition is a torsion free abelian group, but is not a free abelian group.

Solution. $(\mathbb{Q}, +)$ is obviously abelian because addition is commutative in \mathbb{R} . A torsion free froup is a group where the only element of finite order is the identity. Suppose $\frac{m}{n} \in (\mathbb{Q}, +)$ has finite order $k \in \mathbb{N}$. $\underbrace{\frac{m}{n} + \dots + \frac{m}{n}}_{k \text{ times}} = 0$ Then $\frac{mk}{n} = 0$ since $k \neq 0$ and \mathbb{Q} has no nonzero zero divisors. m = 0Thus, if $\frac{m}{n}$ has finite order, it must be 0, the identity. \implies (Q, +) is torsion free. Prove $(\mathbb{Q}, +)$ is not a free abelian group. A free group is a group with a basis. Since $(\mathbb{Q}, +)$ is not cyclic, the basis would have <u>at least</u> 2 elements, $\frac{a}{b}$ and $\frac{m}{n}$. But $-an\left(\frac{m}{n}\right) + mb\left(\frac{a}{b}\right) = -am + am = 0$, a contradiction. Thus, $(\mathbb{Q}, +)$ is not a free abelian group.